Open Educational Resources

/ Contribute Content
Displaying 51 of 68 results
Rating | Views Title Posted Date Contributor Common Core Standards Grade Levels Resource Type

Subtracting Integers

CC_BY-NC

This is a series of lessons fouced on Making sense of integer subtraction using number lines, patterns, and the chip model It contains two activities and homework Part 1 - Number lines and Patterns Part 2 - Chip Model Homework To see a related video, go to: http://vimeo.com/71450580

9/23/2014 Scott Adamson
6.NS.C.5 6.NS.C.6 6.NS.C.6a 6.NS.C.6c 6.NS.C.7 6.NS.C.7a 6.NS.C.7b 6.NS.C.7c 6.NS.C.7d 7.NS.A.1 7.NS.A.1a 7.NS.A.1b 7.NS.A.1c 7.NS.A.1d 7.NS.A.3 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 MP.8 6 7 8 Activity

Adding Integers

CC_BY-NC

This is a series of lessons focused on: Making Zero (Sea of Zeros idea) Adding integers using chips and a checking account analogy It contains three activities and homework: Part 1 - Making Zero Part 2 - Adding integers with the Chip Model Part 3 - Adding inetgers with the Checking Account Analogy Homework To see a related video, go to: http://vimeo.com/71450580

9/19/2014 Scott Adamson
6.NS.C.5 6.NS.C.6 6.NS.C.7 6.NS.C.6a 6.NS.C.6c 6.NS.C.7a 6.NS.C.7b 6.NS.C.7c 6.NS.C.7d 7.NS.A.1 7.NS.A.1a 7.NS.A.1b 7.NS.A.1c 7.NS.A.1d 7.NS.A.2 7.NS.A.2a 7.NS.A.2b 7.NS.A.2c 7.NS.A.2d 7.NS.A.3 MP.2 MP.4 MP.5 MP.6 MP.7 MP.8 6 7 8 Activity

How Big or How Little?

CC_BY-NC

This activity is designed to have students think about what it means to “keep it in proportion” – a very common phrase, but what does it mean?

9/8/2014 Scott Adamson
6.RP.A.1 6.RP.A.2 6.RP.A.3 6.RP.A.3a 6.RP.A.3b 6.RP.A.3c 7.RP.A.1 7.RP.A.2 7.RP.A.2a 7.RP.A.2b 7.RP.A.3 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 MP.8 6 7 Activity

Preheating the Oven

CC_BY-NC

Students use rate of change ideas to predict how long it will take for an oven to preheat to 400 degrees. The youtube video may be used to bring drama to the lesson! A link to the video is here and also in the documents. https://www.youtube.com/watch?v=I2ooIWFAcII&list=UUiPlxONW80Z8rGpu3lSLwjg

9/8/2014 Scott Adamson
7.RP.A.2 7.RP.A.2a 7.RP.A.2b 7.RP.A.2c 8.F.A.3 8.F.B.4 8.F.B.5 MP.1 MP.2 MP.3 MP.4 MP.6 MP.8 6 7 8 Activity

Number Systems - Place Value

CC_BY-NC-SA

Exploring different number bases may not only help you if you are needing in some particular application (like computers or electronics), but also in helping you make sense of the number system with which you are most familiar – the base 10 number system.

9/6/2014 Trey Cox
5.NBT.A.1 5.NBT.A.2 5.NBT.A.3 5.NBT.A.4 3.NBT.A.1 3.NBT.A.2 4.NBT.A.1 4.NBT.A.2 4.NBT.A.3 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 3 4 5 6 7 8 Activity

Sugar Packets - Dan Meyer Three Act Task

CC_BY-NC-SA

The question is simple: How many sugar packets are in a soda bottle? The lesson hooks students immediately with the initial video clip of a man sitting in a restaurant downing packets of sugar one-after-another! The mathematics involved is proportional reasoning.

9/5/2014 Trey Cox
6.RP.A.3 6.RP.A.3a 6.RP.A.3b 6.RP.A.3d 7.RP.A.2 7.RP.A.2a 7.RP.A.2b MP.1 MP.2 MP.3 MP.4 MP.5 6 7 Video

Directed Distance - An Introduction to "Graph"

CC_BY-NC-SA

This annotated lesson can be used to introduce directed distance and the concept of graph. It can be used as the very first experience students have with graphs, as a review, and/or as an introduction to “circular” coordinates (you can choose to never refer to them as polar coordinates). It is highly interactive and connects the concepts of “new” graphing systems to rectangular coordinates. Initially, there is a brief history given and review of the Cartesian rectangular coordinate system.

9/5/2014 Trey Cox
5.G.A.2 6.G.A.3 5.OA.B.3 6.NS.C.8 7.RP.A.2d 8.EE.C.8a 8.F.A.1 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 5 6 7 8 Activity

Powers of Ten - Number Sense

CC_BY-NC-SA

Students (and adults) have a difficult time trying to grasp very large (and very small) numbers. This activity uses an interesting context (astronomical objects0 to stimulate their interest in modeling enormous distances in a way that can help them understand relative distances. Students naturally arrive at the need for a different kind of number scale than linear and arrive at a "power of ten" (logarithmic) scale. The lesson includes an extension for advanced students ready to begin to investigate logarithms.

9/5/2014 Trey Cox
5.NBT.A.2 6.EE.A.1 8.EE.A.1 8.EE.A.3 HSF-BF.B.5 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 MP.8 5 6 7 8 HS Activity

The Forest Problem

CC_BY-NC-SA

Students want to know why they would ever use a sampling method other than a simple random sample. This lesson visually illustrates the effect of using a simple random sample (SRS) vs. a stratified random sample. Students will create a SRS from a population of apple trees and use the mean of the SRS to estimate the mean yield of the trees. Students will then create a stratified random sample from the same population to again estimate the yield of the trees. The use of the stratified random sample is to control for a known source of variation in the yield of the crop, a nearby forest.

9/4/2014 Trey Cox
6.SP.A.1 6.SP.B.4 6.SP.B.5 7.SP.A.1 7.SP.A.2 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 6 7 Activity

Why do we need MAD?

CC_BY-NC-SA

Students will wonder why we need to have a value that describes the spread of the data beyond the range. If we give them three sets of data that have the same mean, median, and range and yet are clearly differently shaped then perhaps they will see that the MAD has some use.

9/4/2014 Trey Cox
6.SP.A.3 6.SP.B.4 MP.1 MP.2 MP.3 MP.4 MP.5 MP.7 6 Activity

Who’s the Best Home Run Hitter of All time?

CC_BY-NC-SA

This lesson requires students to use side-by-side box plots to make a claim as to who is the "best home run hitter of all time" for major league baseball.

9/4/2014 Trey Cox
6.SP.B.4 6.SP.B.5 6.SP.B.5a 6.SP.B.5b 6.SP.B.5c 6.SP.B.5d 6.SP.A.3 6.SP.A.2 7.SP.B.3 MP.1 MP.2 MP.3 MP.4 MP.5 MP.7 6 7 Activity

Roll a Distribution

CC_BY-NC-SA

The purpose of this lesson is to allow the students to discover that data collected in seemingly similar settings will yield distributions that are shaped differently. Students will roll a single die 30 times counting the number of face up spots on the die and recording the result each time as a histogram or a histogram. Students will be asked to describe the shape of the distribution. Combining work with several students will yield more consistent results.

9/4/2014 Trey Cox
6.SP.A.2 6.SP.A.3 6.SP.B.4 6.SP.B.5d 6.SP.B.5c MP.1 MP.2 MP.3 MP.4 MP.5 MP.8 6 Activity

SRS vs. Convenience Sample in the Gettysburg Address

CC_BY-NC-SA

Students have an interesting view of what a random sample looks like. They often feel that just closing their eyes and picking “haphazardly” will be enough to achieve randomness. This lesson should remove this misconception. Students will be allowed to pick words with their personal definition of random and then forced to pick a true simple random sample and compare the results.

9/4/2014 Trey Cox
6.SP.A.1 6.SP.B.4 6.SP.B.5 7.SP.A.1 7.SP.A.2 MP.1 MP.4 MP.5 6 7 Activity

Average Athletics

CC_BY-NC-SA

One of the measures of central tendency is the mean/average. Many do not know much about the average other than it is calculated by "adding up all of the numbers and dividing by the number of numbers". This activity is designed to help students get a conceptual understanding of what an average is and not just how to calculate a numerical value.

9/4/2014 Trey Cox
6.SP.A.2 6.SP.A.3 6.SP.B.5c 6.SP.B.5d MP.2 MP.4 6 7 Activity